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Abstract
New amplitude-phase formulae for Regge-pole positions and residues are
derived. The derivation makes use of certain invariants of the Ermakov–Lewis
type. The formulas allow calculation to be made on the real r-axis, with an
additional flexibility to optimize its numerical aspects.

PACS numbers: 03.65.Ca, 03.65.Nk, 03.65.Sq, 34.50.−s, 34.80.Bm

1. Introduction

The complex angular momentum theory of potential scattering is a powerful tool for
understanding interference effects in elastic, rotationally inelastic and reactive differential
cross sections (see [1–3]).

Early analytic and semiclassical methods used for determining Regge-poles positions and
residues were developed for specific potential models. Recently, more general approaches for
calculating these quantities have been developed [3–10] for a number of diverse applications
ranging from reactive atom–molecule collisions [3] to scattering of gravitational waves by
relativistic black holes [11]. Among these, the semiclassical calculations [4] are usually
accurate, but require detailed knowledge of the potential in the complex coordinate plane.
Non-semiclassical approaches include the eigenvalue moment method [7], the use of absorbing
potentials [12], direct evaluation of the Jost functions [8] and numerical analytic continuation
of the S-matrix into the complex plane of the total angular momentum using the Padé
approximants [9, 10]. All these approaches, with the exception of [9, 10] meet with
difficulties when extended to several coupled channels or degrees of freedom, while the
Padé reconstruction [9, 10] requires dense and highly accurate input data for the poles with
large imaginary parts to be reproduced successfully.

It is, therefore, desirable to develop robust numerical methods, which could be applied
where approximate approaches lose their accuracy or become cumbersome, e.g., in reactive
molecular scattering [10]. The approach based on integrating the Schrödinger equation along
the real coordinate axis while adjusting the (complex) value of the total angular momentum
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goes back to Burke and Tate [13] and in the present work this method is simplified and
generalized. To evaluate the S-matrix, one is required either to accurately estimate the Hankel
function with a large complex index [13], or to integrate far into the asymptotic region where
the centrifugal barrier can be neglected. The idea of using Milne’s amplitude-phase equation
(see [14]) to expedite such integration was first suggested in [15], while a more sophisticated
amplitude-phase technique for calculating Regge poles can be found in [5]. Applications of
similar techniques to bound states calculations can be found in [16, 17].

The purpose of this work is to apply the amplitude-phase method for Regge-pole
calculations using the recent amplitude-phase representation of the potential scattering S
matrix given in [18]. In its present form, the method does not rely on the use of (semi-classical
or quantal) transition points and anti-Stokes’ lines that are central to Andersson’s approach in
[5], but such considerations can be included later. The rest of the paper is organized as follows:
in section 2 we present the basic equations of the amplitude-phase method, i.e. the Schrödinger
and the Milne equations defining the so-called Ermakov system [19] from which the expression
for the S-matrix is derived. The new Regge-pole formulae obtained from the S-matrix
representation are given in section 3. An analysis of the choice of matching point is presented
in section 4. Numerical results for an attractive square-well potential are analysed in section 5,
and section 6 contains our conclusions.

2. The S matrix in the amplitude-phase representation

The complex angular momentum analysis is based on the radial Schrödinger equation

d2��(r)

dr2
+

[
2m

h̄2 (E − V (r)) − �(� + 1)

r2

]
��(r) = 0, (1)

where � is the partial-wave quantum number. The scattering solution is regular at the origin,
i.e.

��(0) = 0, Re � > − 1
2 , (2)

and it satisfies the asymptotic boundary condition

��(r) ∼ N�

(
e−i[κ(r)−π�/2] − S�ei[κ(r)−π�/2]

)
, r → +∞, (3)

where N� is a normalization factor, κ(r) = kr if the potential tail vanishes sufficiently fast
as r → +∞, and κ(r) = kr − η ln 2kr if the potential contains a Coulomb tail, η being the
well-known Sommerfeld parameter. In both cases κ(r) satisfies

dκ(r)

dr
→ k, r → +∞, (4)

with

k =
√

2mE

h̄2 . (5)

The amplitude-phase method makes use also of the particular solution of the nonlinear
Milne equation [14]

d2u�

dr2
+

[
2m

h̄2 [E − V (r)] − �(� + 1)

r2

]
u� = u−3

� (6)

which tends to a constant in the asymptotic limit of large r,

u�(+∞) = k−1/2. (7)
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In the present context this ‘scattering Milne solution’ defines an outgoing Jost solution �+
� (r)

given by [18]

�+
� (r) = u�(r) exp

[
i
∫ r

u−2
� (r ′) dr ′

]
∝ k−1/2 exp(ikr), r → +∞. (8)

With the generalized amplitude-phase method in [18] one derives the S-matrix formula

S� = �+(�)

�−(�)
exp(2i�(�). (9)

In (9) the phase �(�) is given by the integral

�(�) = lim
r→+∞ exp

(
i

[∫ r

r0

u−2
� dr − κ(r)

]
+ iπ�/2

)
, (10)

where r0 is an unspecified phase reference point, u�(r) is the particular scattering solution of the
Milne equation and κ(r) = kr for short-range potentials, while for a Coulomb-like potential
with the Sommerfeld parameter η, κ(r) = η ln(2kr) must be used. The quantities �±(�) are
the Wronskian- or Ermakov–Lewis-type invariants [19, 20], i.e. quantities independent of the
radial variable r. The invariants are expressed in terms of the scattering Milne solution and
the regular radial Schrödinger solution as

�−(�) =
[
� ′

�(rm)u�(rm) − ��(rm)u′
�(rm) − i

��(rm)

u�(rm)

]
exp

(
i
∫ rm

r0

u−2
� dr

)
, (11a)

�+(�) =
[
� ′

�(rm)u�(rm) − ��(rm)u′
�(rm) + i

��(rm)

u�(rm)

]
exp

(
−i

∫ rm

r0

u−2
� dr

)
, (11b)

where the intermediate point rm can be chosen at one’s convenience, and r0 is the arbitrary
phase reference point mentioned earlier.

3. Application to the Regge-pole calculations

It is readily seen that the Regge poles, i.e. the poles of the S matrix in the complex �-plane,
may arise from the zeros of the denominator of equation (9) and are then determined by the
condition

�−(�n) = 0. (12)

In the neighbourhood of a pole �n the expansion of �−(�) is

�−(�) ≈ ∂�−(�n)

∂�
(� − �n), (13)

so that the expression for the residue takes the form

ρn = Res�=�n
S� = �+(�n)

∂�−(�n)/∂�
e2i��n . (14)

It is convenient to choose the reference point r0 to coincide with the point rm where the
invariants �±(�) are calculated. The phase integrals in (11a) and (11b) then vanish and the
Regge-pole condition becomes

�−(�n) = � ′
�n

u�n
− ��n

u′
�n

− i
��n

u�n

= 0, (15)
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so that

�+(�n) = 2i
��n

u�n

, (16)

and

ρn = 2i��n

u�n
(∂�−(�n)/∂�)

exp
(
2i��n

)
. (17)

It may also be convenient to rewrite the Regge-pole condition as

�−(�n)
/(

��n
u�n

) = � ′
�n

��n

− u′
�n

u�n

− i
1

u2
�n

= 0. (18)

Equation (18) expresses that the logarithmic derivative of the regular radial solution ��(r)

matches the logarithmic derivative of the outgoing Jost solution �+
� (r), expressed in terms of

the Milne amplitude u�(r), at some matching point rm. The particular solution u�(r) satisfying
(7) is, typically, a slowly varying function away from the origin and can be accurately obtained
by integrating from the far asymptotic region. In addition, for Re � > − 1

2 the regular radial
solution can be easily integrated from the origin outwards, so that equations (12) and (14)
provide a convenient numerical tool for evaluating both the poles positions and the residues.
The optimal numerical choice of the matching point rm will be further discussed in section 4.

4. The choice of the matching point

The present section deals with the unspecified matching point rm and some problems
encountered when it is used at (or near) the boundary points. Consider the choice of the
matching point rm for short ranged potentials such that V (r) ≈ 0 for r > R. For rm in the far
asymptotic region (rm � R) such that ul(r) ≈ k−1/2, equation (18) reduces to the simplified
boundary condition for �l ,

(d/dr − ik)�l(rm) = 0. (19)

This choice is, however, impractical as it requires an accurate integration of the Schrödinger
equation over a region which can be large, owing to the slow convergence of the Hankel
functions to their exponential form, and where �l is highly oscillatory. It is more
convenient to choose rm just outside the range of the potential, rm > R, in which case
u�(rm) contains no information about the scattering dynamics and serves solely to represent
the Hankel function h1

�(kr) describing the outgoing wave in the potential-free region.
Unlike h1

�(kr), u�(r) usually varies slowly, which allows for the accurate integration of
the Milne equation [14, 15]. If the matching point is chosen inside the potential range,
rm < R,�� contains the information about the inner part of the potential, r < rm, while
the scattering by its tail and the potential-free region is described by u�(r). Finally, rm

could in principle be chosen close to 0 (or the potential wall in the case of a hard sphere)
so that the scattering problem is described purely in terms of the Milne equation (6).
Such a choice is now studied in some detail.

Relation (8) can be inverted by solving equation (18) in order to express u�(r) in terms of
�−2

� (r ′). This yields

u�(r) = ��(r)

[
C ′ − 2i

∫ r

�−2
� (r ′) dr ′

]1/2

(20)

and ∫ r

u−2
� (r ′) dr = i

2
log

[
C ′ − 2i

∫ r

�−2
� (r ′) dr ′

]
+ C ′′, (21)
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where C ′ and C ′′ are arbitrary constants. Equation (20) suggests that u�(r) may, due to
the presence of the integral of �−2

� , have a singularity near a zero of ��(r). Assuming the
matching point rm is chosen at the boundary point where the regular Schrödinger solution
vanishes, the regular Schrödinger solution is written as

��(r) ≈ (r − rm)α+1, r → rm, (22)

where rm = 0 and α = � for regular singular potentials and rm = R and α = 0 for hard sphere
potentials. It follows from (20) that

u�(r) ≈
[

i

α + 1/2

]1/2

(r − rm)1/2, r → rm, Re α > −1

2
, (23)

so that the singular behaviour of u�(r) at the inner-boundary matching point is of the square
root type, u�(rm) = 0 and u′

�(rm) = ∞ for any exponent such that Re α > −1/2. A further
problem arises when the phase

∫ r
u−2

� dr has to be computed for this choice of matching point
rm. From (23) one obtains

i
∫ r

u−2
� dr ≈ C ′′′ + (α + 1/2) ln(r − rm), r → rm, Re α > −1

2
, (24)

where C ′′′ is an integration constant. It is readily seen that

exp

(
i
∫ r

u−2
� dr

)
∼ (r − rm)α+1/2, r → rm, Re α > −1

2
. (25)

Thus, for a ‘soft’ potential, dominated at the origin by the centrifugal barrier, the Milne
solution must vanish at r = 0, and for a hard sphere potential the Milne solution must vanish
at its boundary r = R. Finally, for a strongly repulsive ‘hard’ potential,

V (r) ≈ gr−n, n > 2, r → 0 (26)

one has the accurate WKB approximation for the regular solution [21]

��(r) ∼ rn/4 exp[−2g1/2r1−n/2/(n − 2)], r → +0. (27)

Inserting equation (27) into equation (20), one finds

u�(r) ≈ (−1/g)1/4rn/4, r → +0. (28)

Note that in all cases the Milne solution, representing the Regge state, must vanish at the
left boundary, thus rendering the 1/u3

�-term in equation (6) infinite. Also, the derivative
of the Milne solution will diverge there (with the exception of singular potentials with
n = 4k, k = 1, 2, 3, . . .) thus presenting possible additional difficulties for numerical
integration. Thus, it is desirable to choose the matching point away from the left boundary,
in order to avoid the divergences, yet sufficiently close to utilize the non-oscillating character
of u�.

5. The model and numerical results

The method is applied to an attractive square-well potential model defined by

V (r) = −V0, 0 � r � R,

= 0, r > R. (29)

This model potential allows for a rigorous comparison with results from an analytic closed-
form expression of the S-matrix (see formula (30) below). Physically this model corresponds,
for example, to the scattering of electro-magnetic waves from a spherical water droplet [1].
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Table 1. Resonance Regge-pole positions determined by a square-well potential with depth
V0 = 200 and range R = 1 at an energy of E = 100.

n �n (amplitude-phase) �n (Padé)

0 13.395 33 + 0.007 64i 13.283 + 0.007i
1 10.038 67 + 0.205 72i 10.042 + 0.218i
2 7.087 65 + 0.407 71i 7.077 + 0.383i
3 4.480 02 + 0.454 83i 4.551 + 0.437i
4 2.150 60 + 0.450 65i 2.344 + 0.547i
5 0.024 52 + 0.427 64i 0.609 + 0.585i

The corresponding semiclassical Regge representation for the scattering amplitude was
recently studied in [10]. The Regge pole structure for V (r) contains narrow and broad
resonances, located below and above the centrifugal barrier, respectively, as well as a sequence
of the diffraction poles associated with the scattering off the sharp cut-off [1]. In this section
we will calculate the positions and residues for the resonance poles for the model with
V0 = 200, R = 1, and the scattering energy E = 100 with units such that 2m/h̄2 = 1. The
results will be compared with the values obtained by constructing a [9/9] Padé approximant
[10] from the S-matrix computed for the first 19 partial waves, � = 0, 1, . . . , 19.

For the potential (29) the obvious matching point is rm = R, at which the regular
Schrödinger solution should not be exactly zero for a Regge state (see the preceding section).
Unfortunately, other ways to choose the matching point are not possible in the present
formulation.

The regular Schrödinger solution is integrated from a point sufficiently near r = 0 to
r = R, for an initial guess of the Regge-pole position �n. In the present case the initial guesses
are provided by the set of pole positions calculated with the Padé approximant, specified
above. The Milne solution is integrated from a large value r ≈ 108 to the matching point
r = R, where the Regge pole condition is tested and a new initial guess is estimated by the
Newton iteration scheme. The iteration process stops when the absolute value of the Newton
correction of the pole position is less than a given number; here 10−6 is used.

An additional check of the accuracy of the numerical results can be done using the analytic
S-matrix formula for the square-well potential [1]

S� = −H
(2)
�+/2(β)

H
(1)
�+/2(β)

{
ln′ H(2)

�+/2(β) − N ln′ J�+/2(α)

ln′ H(1)
�+/2(β) − N ln′ J�+/2(α)

}
, (30)

where H
(1,2)
�+/2 (β) are the cylindrical Hankel functions and J�+/2(α) is the cylindrical Bessel

function. ln′ denotes the logarithmic derivative with respect to the arguments α = √
E + V0R

and β = √
ER, and N = α/β.

The absolute value of the denominator in the embraced factor in the analytic formula (30)
is approximately 10−5 for the pole positions obtained in the present amplitude-phase
calculations. In table 1 the pole positions of the amplitude-phase method are presented
with five decimals and in the order of decreasing real parts. The less accurate pole positions
given by the Padé method that led to converging results for the amplitude-phase method are
presented with tree decimals. The corresponding pole residues are given in table 2.

The pole number n, which semiclassically corresponds to the number of intermediate
complex-r nodes (zeros) of the wavefunction, cannot be simply deduced from the Regge-pole
condition (15) and is assigned by studying the regular wavefunctions on the real r-axis. In
table 1 one notes that the n = 0 is a ‘narrow’ resonance, typically located below the top of
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(c)

Figure 1. Illustration of the complex Milne solutions corresponding to the resonance Regge poles
with n = 0, 1, in the tables and also to the leading diffraction pole (31). The imaginary part of
u�(r) is plotted against its real part for Regge state.

Table 2. Residues corresponding to the Regge poles in table 1.

n ρn (amplitude-phase) ρn (Padé)

0 0.0004 + 0.0153i 0.0002 + 0.013i
1 0.2769 + 0.2549i 0.30 + 0.27i
2 −0.3093 − 0.4131i −0.28 − 0.39i
3 0.3647 − 0.2351i 0.34 − 0.23i
4 0.3515 + 0.0821i 0.35 + 0.04i
5 0.2662 + 0.1538i 0.20 − 0.16i

the centrifugal barrier, whereas the rest represent the ‘broad’ resonances close to or above
the barrier top [1]. Unitarity of the S-matrix requires that each pole be complemented by a
symmetric Regge zero in the fourth quadrant of the complex �-plane. Accordingly, the narrow
n = 0 pole is almost cancelled by its zero and has a relatively small residue. The broad
poles with n > 0 have larger residues of the same order and, unlike the narrow resonance
significantly affect the angular distribution.

The amplitude-phase method also located the leading ‘diffraction pole’ [1] with

�d = 11.333 39 + 4.270 62i, ρd = 0.4969 − 0.2495i, (31)

not reproduced by the [9/9] Padé approximant. The diffraction pole defines a decaying surface
wave with a narrow angular range in the forward direction. For this state, the Milne solution
in figure 1(b), initially real and equal to k−1/2 with k = √

E, remains almost constant (note
the difference in the scale between figures 1(a), (b) and (c), but with a tendency to become
non-monotonic.
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Figure 2. Illustration of the r-behaviour of the regular Schrödinger solutions corresponding to the
resonance Regge poles labelled with n = 0, 1, in the tables and also the leading diffraction pole
(31). The solid lines represent the real parts of the solutions and the dashed-dotted ones represent
the imaginary parts.

Finally, figure 2 shows the behaviour of the regular Schrödinger wavefunctions in the
interior region r < R for n = 0, 1 and for the diffraction Regge state (31). Comparing the
n = 1 resonance wavefunction with that for the diffraction surface state, one notes that they
have the same number of nodes (i.e. one) in their real parts. This problem of distinguishing and
classifying complex (Regge) states is typical for a non-semiclassical approach. Note, however,
the present amplitude-phase method may (in principle) be extended to include all semiclassical
ingredients in order to make the classification of states easier. Thus, for the present problem it
is possible to use the contours of the semiclassical Stokes’- and anti-Stokes’ lines and for each
anti-Stokes’ line find an appropriate Milne function that is strictly monotonic in its complex
radial behaviour.

6. Conclusions

The main achievement of the present work is the demonstration of a method for calculating
Regge-pole positions and residues by using the real r axis. The formulation of the present
amplitude-phase method, based on recent studies of the invariants of Ermakov systems of
equations, contains a flexibility in the choice of a ‘matching point’, which allows us to
optimize and simplify the numerical calculations for smooth potentials. However, for the
discontinuous potential studied in section 5 this flexibility could not be utilized.

It should be emphasized that, except for discontinuous potentials, the method contains the
option of using complex-valued matching points (in order to avoid numerical integration of
oscillatory functions) and of using several complex matching points when many barriers of the



An amplitude-phase approach to calculating Regge-pole positions and residues 5313

effective real (smooth) potential is present. Such improvements may be needed if important
Regge poles are located far out in the complex plane, but it requires more than one Milne
solution to describe the regular wavefunction in a subdivided outer region. Improvements of
this kind have been made and will soon be published elsewhere.

Further applications of the amplitude-phase method, such as calculations of Siegert
states [22], accurate evaluation of the Bessel functions of complex index and extensions
to multichannel scattering will be considered in future work.
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Fröman N and Fröman P O 1991 Phys. Rev. 43 3563

[5] Andersson N 1993 J. Phys. A: Math. Gen. 26 5085
[6] Kais S and Herschbach D R 1993 J. Chem. Phys. 98 3990
[7] Handy C R and Msezane A Z 2001 J. Phys. A: Math. Gen. 34 L531

Handy C R, Msezane A Z and Yan Z 2002 J. Phys. A: Math. Gen. 35 6359
[8] Sofianos S A, Rakityansky S A and Massen S E 1999 Phys. Rev. A 60 337
[9] Vrinceanu D, Msezane A Z, Bessis D, Connor J N L and Sokolovski D 2000 Chem. Phys. Lett. 324 311

[10] Sokolovski D and Msezane A Z 2004 Phys. Rev. A 70 032710
[11] Andersson N and Thylwe K-E 1993 Class. Quantum Grav. 11 2991
[12] Sokolovski D, Tully C and Crothers D S F 1998 J. Phys. A: Math. Gen. 31 6525
[13] Burke P J and Tate C 1969 Comput. Phys. Commun. 1 97
[14] Milne W E 1930 Phys. Rev. 35 863
[15] Wheeler J A 1937 Phys. Rev. 52 1123
[16] Korsch H J and Laurent H 1981 J. Phys. B: At. Mol. Phys. 14 4213
[17] Matzkin A 2000 Phys. Rev. A 63 012103

Matzkin A 2001 J. Phys. A: Math. Gen. 34 7833
[18] Thylwe K-E 2004 J. Phys. A: Math. Gen. 37 L589
[19] Ermakov V P 1880 Univ. Izv. Kiev Serie III 9 1

Lewis H R 1967 Phys. Rev. Lett. 18 510
Lewis H R 1967 Phys. Rev. Lett. 18 636 (erratum)
Lewis H R 1968 J. Math. Phys. 9 1976

[20] Thylwe K-E 2002 J. Phys. A: Math. Gen. 35 4359
[21] Frank W M, Land D J and Spector R M 1971 Rev. Mod. Phys. 43 36-98
[22] Sitnikov G V and Tolstikhin O I 2003 Phys. Rev. A 67 032714


